
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

305-348-6036

W911NF-10-1-0366

56759-CS-H.16

Conference Proceeding

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

16-01-2015

Approved for public release; distribution is unlimited.

META: Multi-resolution Framework for Event Summarization

Event summarization is an effective process that mines and organizes event patterns to represent the original events.
It allows the analysts to quickly gain the general idea of the events. In recent years, several event summarization
algorithms have been proposed, but they all focus on how to find out the optimal summarization results, and are
designed for one-time analysis. As event summarization is a comprehensive analysis work, merely handling this
problem with a single optimal algorithm is not enough.

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

Multi-resoultion, event summarization

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Tao Li

Yexi Jiang, Charles Perng, Tao Li

611102

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Florida International University
11200 SW 8 Street
MARC 430
Miami, FL 33199 -0001

ABSTRACT

META: Multi-resolution Framework for Event Summarization

Report Title

Event summarization is an effective process that mines and organizes event patterns to represent the original events.
It allows the analysts to quickly gain the general idea of the events. In recent years, several event summarization
algorithms have been proposed, but they all focus on how to find out the optimal summarization results, and are
designed for one-time analysis. As event summarization is a comprehensive analysis work, merely handling this
problem with a single optimal algorithm is not enough.

In the absence of an integrated summarization solution, we propose an extensible framework – META – to enable
analysts to easily and selectively extract and summarize events from different views with different resolutions. In this
framework, we store the original events in a carefully-designed data structure that enables an efficient storage and
multiresolution analysis. On top of the data model, we define a summarization language that includes a set of atomic
operators to manipulate the meta-data. Furthermore, we present 5 commonly used summarization tasks, and show
that all these tasks can be easily expressed by the language. Experimental evaluation on both real and synthetic
datasets demonstrates the efficiency and effectiveness of our framework.

Read More: http://epubs.siam.org/doi/abs/10.1137/1.9781611973440.70

Conference Name: Proceedings of the 2014 SIAM International Conference on Data Mining

Conference Date: May 01, 2014

META: Multi-resolution Framework for Event Summarization

Yexi Jiang1, Chang-Shing Perng2, Tao Li1

1Florida International University
2IBM T.J Watson Research Center

Abstract

Event summarization is an effective process that mines and

organizes event patterns to represent the original events. It

allows the analysts to quickly gain the general idea of the

events. In recent years, several event summarization algo-

rithms have been proposed, but they all focus on how to find

out the optimal summarization results, and are designed for

one-time analysis. As event summarization is a comprehen-

sive analysis work, merely handling this problem with a sin-

gle optimal algorithm is not enough.

In the absence of an integrated summarization solution,

we propose an extensible framework – META – to enable an-

alysts to easily and selectively extract and summarize events

from different views with different resolutions. In this frame-

work, we store the original events in a carefully-designed

data structure that enables an efficient storage and multi-

resolution analysis. On top of the data model, we define a

summarization language that includes a set of atomic opera-

tors to manipulate the meta-data. Furthermore, we present 5

commonly used summarization tasks, and show that all these

tasks can be easily expressed by the language. Experimental

evaluation on both real and synthetic datasets demonstrates

the efficiency and effectiveness of our framework.

1 Introduction

Event summarization is a process that mines and organizes

event patterns to represent the original event sets, so that

analysts can understand the system behaviors. Different

from traditional frequent pattern mining techniques that sim-

ply discover patterns, event summarization provides a brief

yet accurate summary for event datasets. These summaries

smooth the learning curve of understanding the system and

give the analysts insightful hints before conducting deep

analysis with advanced data mining techniques.

Some research efforts have been working on providing

various summarization methods [8, 13, 4, 9, 17]. Each of

them defines its own way of summarizing events/documents.

On the other hand, there are also some efforts [15, 3] working

on providing various techniques for presenting event sum-

marization results. From all these explorations, we can con-

clude that event summarization is not a problem that can be

handled by a single model or algorithm. For different users

or for different purposes, there are various ways of conduct-

ing event summarization, and also many parameters to be set.

To obtain an event summary from different perspectives, an

analyst has to re-preprocess the data and change the program

time after time. This is a drain of analysts’ productivity.

The predicament is very similar to that of the time when

every data-intensive task has to use a separate program for

data manipulation. The data representation and query prob-

lem were eventually addressed by the ER model and SQL.

Following the historical path of DBMS and query languages,

we believe event summarization (as well as event analysis)

should also be abstracted to an independent software system

with a uniform data model and an expressive query language.

An event summarization system has to be flexible

enough, so that the real-life scenarios can be adequately and

efficiently handled and supported. The followings are some

typical scenarios that an event analyst would encounter.

SCENARIO 1. An analyst obtains a system log of the whole

year, but he only wants to view the summary of the events

that are recorded between the latest 30 days. Moreover, he

wants to see the summary without the trivial event “firewall

scan”. Also, he wants to see the summarization with the

hourly granularity.

SCENARIO 2. After viewing summarization results, the an-

alyst suspects that one particular time period of events be-

haves abnormally, so he wants to conduct anomaly detection

just for that period to find out more details.

SCENARIO 3. The system has generated a new set of secu-

rity log for the current week. The analyst wants to merge

the new log into the repository and also to summarize the

merged log with the daily granularity.

To handle the work in the first scenario using existing

event summarization methods, we need to perform the fol-

lowing tasks: (1) Write a program or use the existing pro-

gram to extract the events occurred during the specified time

range; (2) Write or leverage existing program to remove the

irrelevant event types; (3) Write or leverage existing pro-

gram to aggregate the events by hour; and (4) Feed the pre-

processed events to existing event summarization methods

to obtain the summary. Similarly, about the same amount of

works are needed for the second and third scenarios. Note

that, if parameter tuning is needed, a typical summarization

605 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

01
/1

6/
15

 to
 1

31
.9

4.
13

0.
33

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

task requires hundreds of such iterations in the aforemen-

tioned scenarios. Therefore, it is inefficient and tedious.

Similar to OLAP as an exploration process for trans-

actional data, event summarization is also a trial-and-error

process for temporal event data. As event summarization

requires repetitive exploration of the events from different

views, we believe it is necessary to have an integrated

framework to enable users to easily, interactively, and se-

lectively extract, summarize, and analyze the temporal event

data. Event summarization should be the first step of any

other mining tasks, and its goal is to enable the analysts to

quickly gain the general idea of the events. Similar to FIU-

Miner [21] that supports rapid task configuration, the event

summarization framework should allow analysts to easily

compose various summarization and analysis tasks, and then

to efficiently execute them.

To satisfy the above requirements, we propose an ex-

tensible event summarization framework called META to fa-

cilitate the multi-resolution summarization as well as its as-

sociated tasks. Instead of inventing new summarization al-

gorithms, we focus on filling the missing component of the

event summarization task and making it a complete knowl-

edge discovery process. Therefore, our work is complemen-

tary and orthogonal to previous works that focus on propos-

ing different event summarization algorithms.

We design META with the following principles: 1) the

framework should be flexible enough to accommodate many

real-life scenarios; and 2) the framework should ease the

summarization tasks implementation as much as possible.

Figure 1 shows the corresponding workflows of conducting

the above scenarios with the META framework, including

ad-hoc summarization, events storing, recovering, updating,

and merging. For each scenario, the analyst only needs to

write and execute a short piece of script.

Figure 1: Summarization workflows of example scenarios

1.1 Contributions The contributions of this paper are

listed as follows: (1) We present a multi-resolution data

model called summarization forest to efficiently store the

event sequences as well as the necessary meta-data. Sum-

marization forest is designed to store and represent the event

sequence in multi-resolution views with specified precision.

(2) We define a summarization language which includes a

set of basic operations for expressing summarization tasks.

Each basic operation is an atomic operation that directly

operates the data. (3) We introduce five commonly used

event summarization tasks, including ad-hoc summarization,

event storing, recovering, updating, and merging. We also

show that these tasks can be expressed by the language. (4)

We conduct a series of experiments on both real and syn-

thetic event sequences to demonstrate the effectiveness, con-

venience, and efficiency of our proposed framework.

2 Related Works

Several works focusing on leveraging data mining and data

processing techniques for event analysis have been proposed

in recent years. According to the functionalities, they can be

categorized as: event log pre-processing, event summariza-

tion, and event based system analysis.

In general, the event logs obtained from systems are un-

structured/ semi-structured and are not immediately avail-

able for analysis. Researchers have proposed event format

standards such as Common Event Expression [3] and Event

Relationship Network [15] to describe all the event logs. Un-

fortunately, these representations are not widely adopted. In

order to convert the raw logs into a canonical readable for-

mat, many efforts are needed to be made on pre-processing

the logs [1, 11]. They utilize various techniques such as

source code parsing, clustering and substring matching to

extract the template from the raw event messages and then

transform them into structured formats.

Event summarization focuses on extracting the high

level overview from event log. Before directly diving into

the details, it is a good choice for the analysts to see the

summary first. Peng et al. [14] proposed an approach to

find the dependency among events by measuring inter-arrival

distribution of the event. Kiernan et al. [8] summarized the

events by segmenting the event sequence according to the

frequency changes. Wang et al. [13] further extended Kier-

nan’s work by presenting the inter-segment relationship with

HMM. Jiang et al. [4] provided a richer summarization of the

events by providing the event relationship network (ERN)

based on the logs, which captures the temporal dynamics.

To the extent of our knowledge, existing research mainly fo-

cused on developing approaches to find the optimal summa-

rization results, while our work is to present a comprehensive

and extensible framework to facilitate the multi-resolution

summarization for the system analysts.

Event log based system analysis focuses on revealing

the hidden problems of the systems. Different analysis tasks

pay attention to different application aspects, such as system

failure tracing [19, 10], event correlation discovery [20, 18,

16], and event based trend analysis [5, 6, 7]. In practice,

these methods are often conducted when the analysts already

606 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

01
/1

6/
15

 to
 1

31
.9

4.
13

0.
33

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

have some prior knowledge about the data.

3 The Multi-Resolution Data Model

An event sequence can be represented in the form of event

record sequence D = (< t1, e1 >,< t2, e2 >, ..., <

tn, en >), where ti is the time when an event occurs and

ei denotes the event instance with an associated ‘type’.

Each event instance belongs to one of the m types E =
{e1, ..., em}. Note that the ‘type’ is a generic terminology.

Any combination of the features of an event can be used

as the ‘type’, e.g. the event category and event name in

combination can be used as the event type. In this section,

we first describe how to use an event vector, an intermediate

data structure, to represent the event sequence. Then we

introduce summarization forest (SF), the data model to store

event sequences with multiple resolutions.

3.1 Vector Representation of Event Occurrences Given

an event sequence D with m event types and time range

[ts, te], we decompose D into m subsequences D =
(De1 , ..., Dem), each contains the instances of one event

type. Afterwards, we convert each Di into an event vector

Vi, where the indexes indicate the time and the values indi-

cate the number of event occurrences. During conversion, we

constrain the length of each vector to be 2l, l ∈ Z+, where l

is the smallest value that satisfies 2l ≥ te − ts. In the vector,

the first te − ts entries would record the actual occurrences

of the event instances, and the remaining entries are filled

with 0’s. Example 1 provides a simple illustration on how

we convert the event sequence.

EXAMPLE 1. The left figure in Figure 2 gives an event se-

quence containing 3 event types within time range [t1, t12].
The right figure shows the conversion result of the given

event sequence. Note that the original event sequence is

decomposed into 3 subsequences. Each subsequence rep-

resenting one event type is converted to a vector with length

16. The numbers in bold indicate the actual occurrences of

the events, and the remaining numbers are filled with 0’s.

C C C C C C

B B

ty
p
e

A:1110001110000000

B 0000001000010000B B

A A A A A A

1 2 3 4 5 6 7 8 9 10 11 12 t

B:0000001000010000

C:0011100111000000

Figure 2: Convert the original event sequence to the vectors

Vectors intuitively describe the occurrences of events,

but this kind of representation is neither storage efficient

(as it requires O(|E|n)) nor analysis efficient (as it does not

support multi-resolution analysis). To facilitate the storage

and analysis, we propose summarization tree to model the

event occurrences of a single type. Furthermore, we propose

summarization forest to model the event occurrences of the

whole event log.

3.2 Summarization Tree The summarization tree is used

to store the event occurrences for a single event type. It

is capable of providing both frequency and locality of oc-

66

e
so
lu
ti
o
n

summary node

coarse

4

1 1

1 2 1 02 1 0 2 1 0 0 0

3 2 1 0

5 1re

description nodes
fine

G l it 2

Granularity 3

Granularity 4

11 10 00 11 10 00 00 00

1 2 1 0

0 1 0 0 1 0 0 0

2 1 0 2 1 0 0 0

time

Granularity 1

Granularity 2

Figure 3: Relationship between vector and ST

currences simultaneously. Moreover, it satisfies the multi-

resolution analysis (MRA) [12] requirements by represent-

ing the event occurrences with various subspaces. This prop-

erty enables the analysts to choose a proper subspace to view

the data at a corresponding granularity. The summarization

tree is formally defined below.

DEFINITION 3.1. A summarization tree (ST) is a balanced

tree where all nodes store the temporal information about the

occurrences of events. The tree has the following properties:

1. Each summarization tree has two types of nodes: summary

node and description nodes.

2. The root is a summary node, and it has only one child. The

root stores the total occurrences of the events throughout

the event sequence.

3. All the other nodes are description nodes. They either have

two children or no child. These nodes store the frequency

difference between adjacent chunks (the frequency of the

first chunk subtracted by that of its following chunk) of

sequence described by lower level nodes.

4. The height of the summarization tree is the number of levels

of the description tree. The height of a node in tree is the

counted from bottom to top, starting from 0. The nodes at

height i store the frequency differences that can be used to

obtain the temporal information of granularity i.
Considering event type A in Example 1, Figure 3 shows

its vector and the corresponding summarization tree. As

illustrated in the figure, the summarization tree stores the

sum of the occurrences frequency (6 occurrences) at the root

node, and the frequency differences (within the dashed box)

in the description nodes at various granularities. Note that

at the same level of the tree, the description nodes store

the differences between adjacent sequence chunks at the

same granularity. The larger the depth, the more detailed

differences they store. For example, at granularity 1, every

two adjacent time slots in the original event sequence are

grouped into one chunk, and the grouped event sequence is

‘21021000’. Correspondingly, in the summarization tree, the

frequency differences of each adjacent time slot (0,−1, 0, 0,
−1, 0, 0, 0) are recorded at the leaf level. Similarly, the

frequency differences at various granularities are recorded

in the description nodes at the corresponding levels.

It is clear that the space complexity of the summariza-

tion tree is O(|T |), where |T | = n and n is the length of

the vector. From the storage perspective, directly storing the

tree has no benefits for space saving. Basically, there are two

ways to reduce the space complexity of summarization tree:

detail pruning and sparsity storage.

607 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

01
/1

6/
15

 to
 1

31
.9

4.
13

0.
33

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

3.2.1 Detail Pruning In practice, analysts only care about

the high-level overview of the event occurrences. Conse-

quently, there is no need to store all the details of the event

sequences. As the summarization tree describes the event

occurrences in a top-down manner — a coarse-to-fine strat-

egy, we can save the storage by removing the lower lev-

els of the description nodes. The pruned tree still contains

enough details for analysis, and an analyst who analyzes a

long-term event log would not care about the event occur-

rences at the second precision. Due to the hierarchical struc-

ture of the tree, we can reduce the storage space exponen-

tially. Lemma 3.1 shows how much space can be reduced

through pruning. For example, the original tree has a height

of 14 levels and 8192 (or 213) nodes. If we prune the tree

by removing the last 6 levels, the size of tree will become
1
26 |T | = 128, which is only about 1.5% of the original size.

The pruned tree is still able to describe the event occurrences

with 1-minute granularity.

LEMMA 3.1. Suppose the height of summarization tree is

H , if we only keep the nodes with a height larger than or

equal to k, the size of the pruned tree is 2H−k.

Proof. According to the property 3 of the definition of sum-

marization tree, besides the summarization node, the sum-

marization tree is a perfect binary tree. If only the nodes with

height larger than or equal to k are kept, the size of remain-

ing nodes in perfect binary tree part is
∑H−1

i=k 2H−1−i =
2H−k − 1. Therefore, the total size of the summarization

tree after pruning is 2H−k.

3.2.2 Sparsity Storage Another way to reduce the space

is to only store the non-empty nodes of the tree. The majority

of the event types rarely appear in the event sequence. In this

case, the corresponding vector will be dominated with 0’s.

Accordingly, the transformed summarization tree will also

contain many 0’s. For example, event type X only occurs

twice throughout a 2-hour (7200 second) event sequence.

The first occurrence is the first second, and the second

occurrence is the second second. The number of nodes in

the corresponding summarization tree is 8192, but there are

only 28 non-zero nodes. Lemma 3.2 provides a lower bound

on how many zero nodes exist in a summarization tree.

LEMMA 3.2. Suppose the occurrence proportion (the prob-

ability of occurrences at any time) of event type X is r =
#X
n

, where n is the length of vector that stores the event oc-

currences. For the corresponding summarization tree, the

proportion of zero nodes at height h is ph = max(1 −
2h+1r, 0).

Proof. The proof can be found in Appendix.

Based on Lemma 3.1 and 3.2, we further show the space

complexity of a summarization tree in Theorem 3.1.

THEOREM 3.1. The space complexity of a summariza-

tion tree with granularity k is O(|T |
2k

−
∑H

i=k max(|T |
2h

−

2h+1r, 0)), where |T | is the length of the vector, H is the

height of the summarization tree, and r is the occurrence

proportion as described in Lemma 3.2.

Proof. The proof is based on Lemma 3.1 and Lemma 3.2.

The number of nodes with the height (granularity) larger

than or equal to k is 2H−k = |T |
2k

according to Lemma 3.1.

For each level h ≥ k, the number of zero nodes is nhp =

max(|T |
2h

− 2h+1r, 0), and the sum of all nodes with height

larger than or equal to k is
∑H

i=k
|T |
2h

− 2h+1r. Therefore,

the number of non-zero nodes in the summarization tree is
|T |
2k

−
∑H

i=k max(|T |
2h

− 2h+1r, 0).

It is true that the second term will become 0 when

r is sufficiently large. However, based on the empirical

study, most of the event types occur rarely, and therefore

0 < r ≪ 1.

3.3 Summarization Forest Summarization forest is a data

model which contains all the summarization trees. In one

forest, there are |E| summarization trees. Each stores the

events of one event type. Besides trees, the summarization

forest also stores the necessary meta-data. The summariza-

tion forest is formally defined in Definition 3.2.

DEFINITION 3.2. A summarization forest (SF) is a 6-tuple

F =< E , T , ts, te, l, r >, where:

1. E denotes the set of the event types in the event sequence.

2. T denotes the set of summarization trees.

3. ts and te denote the start timestamp and end timestamp of

the event sequence represented by F .

4. l denotes the full size of each ST, including the zero and

non-zero nodes. All the trees have the same full size.

5. r denotes the resolution of each ST. All the trees are in the

same resolution.

Note that since the summarization trees are stored in

sparsity style, the actual number of nodes that are stored for

each tree can be different and should be much less than the

full size. Given a summarization forest, we can recover the

original event sequences.

4 Basic Operations

In this section, we propose a set of basic operators which are

built on top of the data model we proposed. These operators

form the summarization language, which is the foundation of

the event summarization tasks presented in our framework.

The motivation of proposing a summarization language is

to make the event summarization flexible and allow the

advanced analysts to define the ad-hoc summarization tasks

to meet the potential new needs.

The basic operators are categorized into two families:

the data transformation operators and the data query opera-

tors. The operators of the first family focus on transforming

data from one type to another, and they are not directly used

for summarization work. The operators of the second family

608 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

01
/1

6/
15

 to
 1

31
.9

4.
13

0.
33

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Operation Symbol Description

Vectorize ◦(Di) Vectorize the subsequence Di.

Unvectorize •(Vi) Unvectorize the vector Vi.

Encode ⊳(Vi) Encode Vi into a summarization tree Ti.

Decode ⊲(Ti) Decode Ti back to vector Vi.

Prune ⊖(Ti) Prune the most detailed information of Ti.

Concatenate F1 ⊎ F2 Concatenate two SF F1 and F2.

Project Πe(1),...(F) Extract events of types e(1), ..., e(k) from F .

Select σ[t1,t2](F) Pick the events occurs between time [t1, t2].
Zoom τi(F) Aggregate the events with granularity u.

Describe Υname Use algorithm name for event summarization.

Table 1: Notations of basic operations

focus on retrieving/manipulating data in read-only way, and

they provide the flexibility of generating the summarization.

To make the notations easy to follow, we list all the symbols

of all these operations in Table 1. We will introduce their

meanings later in this section.

4.1 Data Transformation Operators The data transfor-

mation operators includes vectorize, unvectorize, encode, de-

code, prune, and concatenate. Their functionalities are listed

as follows:

Vectorize and Unvectorize: Vectorize is used to convert the

single event type subsequence Di into a vector Vi while un-

vectorize does the reverse work. Both of them are unary,

and represented by symbol ◦ and •, respectively. Semanti-

cally, these two operators are complementary operators, i.e.

Di = •(◦(Di)) and Vi = ◦(•(Vi)).

Encode and Decode: Encode is used to convert the vector Vi

into a summarization tree Ti while decode does the reverse

work. Similar to vectorize/unvectorize, Encode and decode

are complementary operators and both of them are unary. We

use symbol ⊳ and ⊲ to denote them respectively.

Prune: The operator Prune is unary, and it conducts on the

summarization tree. It is used to remove the most detailed

information of the events by pruning the leaves of a summa-

rization tree. Note that this operator is irrecoverable. Once it

is used, the target summarization tree will permanently lose

the removed level. We use ⊖ to denote this operator.

Concatenate: The operator concatenate is a binary opera-

tor. It combines two SFs into a big one and also updates the

meta-data. We use ⊎ to denote this operation. Note that only

the SFs with the same resolution can be concatenated.

4.2 Data Query Operators The data query operators in-

clude select, project, zoom, and describe. They all take a

summarization forest F as the input. The data query opera-

tors are similar to the Data Manipulation Language (DML)

in SQL, which provides query flexibility to users.

Their functionalities are listed as follows:

Project: The operator project is similar to the ‘projec-

tion’ in relational algebra. It is a unary operator written as

Πe(1),e(2),...,e(k)
(F). The operation is defined as picking the

summarization trees whose event types are in the subset of

{e(1), ..., e(k)} ⊆ E .

Select: The operator select is similar to the ‘selection’ in re-

lational algebra. It is a unary operator written as σ[t1,t2](F).

Zoom: The operator zoom is used to control the resolution

of the data. It is a unary operator written as τu(F), where u

is the assigned resolution, the larger, the coarser.

Describe: The describe operator indicates which algorithm

is used to summarize the events. Its implementation depends

on the concrete algorithm and . all the previous event sum-

marization papers can be regarded as proposing a concrete

describe operator. For example, [4] summarize the events

with periodic and inter-arrival relationships. The describe

operation is written as Υname(F), where name is the name

of summarization algorithm used for describing the events.

If necessary, the analyst can implement her/his own describe

algorithm that follows the specification of our framework. In

our implementation, the time complexity of all these opera-

tors are lower than O(|E||T | log |T |) = O(|E|n log n).

5 Event Summarization Tasks

Considering the requirements of the analysts discussed in In-

troduction, we introduce five commonly used event summa-

rization tasks: summarization, storing, recovering, merging,

and updating, using the previously defined basic operators as

the building blocks. The intention here is to demonstrate the

expressive capability of the basic operators, instead of giving

a thorough coverage of all the possible tasks.

5.1 Summarization Task Summarization task is the core

of event summarization, and all prior works about event

summarization focus on this problem. Based on the defined

basic operators, analysts can summarize the events in a

flexible way. In our framework, any summarization task can

be described by the following expression:

Υname(σ
∗
[t1,t2]

τ∗uΠ
∗
E∈P(E)(F)).

The symbol ∗ denotes conducting the operation 0+ times.

With the combination of operators, the analysts are able to

summarize any subset of events in any resolution during any

time range with any summarization algorithm.

One thing should be noted is that the order of the opera-

tors can be changed, but the summarization results of differ-

ent orders are not guaranteed to be the same. For example,

a commonly used implementation of the describe operator is

based on the minimum description length principle [4, 8].

Such implementation aims to find a model that describes

the events with least information. Therefore, the results of

Υname(τu(F)) and τu(Υname(F)) are possibly different.

5.2 Storing Task Storing is an important task. Converting

the raw event log time after time is time-consuming with

low management efficiency. This task enables the analysts

to convert the events into a uniform data mode only once and

reuse it afterwards. The store task can be written as:

F =
⋃

ei∈EI

⊖∗(⊳(◦(Di))),

609 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

01
/1

6/
15

 to
 1

31
.9

4.
13

0.
33

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

where EI denotes the set of event types that the analysts are

interested in, and
⋃

denotes putting all the trees together to

form the SF. The analysts are able to pick any time resolution

and any subset of all the event types for storage.

5.3 Recovering Task Recovering task is the link between

the event summarization and other data mining tasks. After

finding the interesting piece of event logs via the summa-

rization results, the analysts should be able to transform the

selected portion of SF back to its original events, so they can

use other data mining techniques for further analysis. The

recover task can be expressed as:

•(⊲(σ∗
[t1,t2]

(τu(Π
∗
E∈EI

(F))))).

This expression shows that the analysts can selectively

recover the piece of events with any subset of event types, at

any time range and any time resolution.

5.4 Merging and Updating Tasks Both merging and up-

dating tasks focus on the maintenance of stored SF, but their

motivations are different.

The merging task is conducted when the analysts obtain

the SFs with disjoint time periods and want to archive them

altogether. Suppose F1 and F2 denote two SFs, where F2

contains more details (contains lower resolution level). The

merging task can be expressed as:

Fnew = F1

⊎
⊖∗(F2).

As shown in the above expression, when we merge two

summarization trees with different resolutions, the SF with

higher granularity would be pruned to meet the SF with

lower granularity. Then these two SFs would be merged with

the concatenate operation.

Updating task is conducted when the analysts want to

update the existing SF with a new piece of event log. It can

be expressed by basic operators as follows:

Fnew = F
⊎

(
⋃

ei∈EI

⊖∗(⊳(◦(Di)))),

where the operand of
⋃

is similar to the operand of
⋃

in

storing task. Firstly, the new set of subsequence Di will be

vectorized and then encoded into a SF F . Then the new SF

would be merged into the old SF same as the merge task.

6 Experimental Evaluation

We conduct a series of experiments to evaluate our proposed

framework. In this section, we do not focus on demonstrat-

ing the meaningfulness or correctness of the summarization

results, since it should be the work of the concrete summa-

rization algorithm designers. Instead, the main goal of the

evaluation is to explore the efficiency and the effectiveness

of the proposed framework, and to show how META makes

the summarization more flexible and convenient. More con-

cretely, our experiments aim to answer the following ques-

tions: (1) What is the cost to store the events in the form of

SF? (2) How efficient is it to retrieve and convert the data

from the SF? (3) How effective and flexible can our frame-

work support the event summarization? and (4) What about

the performance of the updating and merging tasks?

In addition to the evaluation of META, we also give a

case study to show how META facilitates analysts to conduct

event summarization tasks. As a showcase, we leverage the

algorithm proposed in [4] as the summarization algorithm,

which summarizes the events from the perspective of inter-

arrival temporal relationship.

6.1 Storage Cost To evaluate the storage cost of SF,

we use several real event logs across different OS plat-

forms and domains. These event logs are collected from

customer’s servers by IBM service department and the

details of these logs are listed in Table 2 (Available at

http://share.olidu.com/events/). These datasets are different

in the aspect of time range, event occurrences, occurrences

frequency, distinct event types, and log record styles.

Name Domain Time Units #Types

secure-secure Security 534,898 14

nokia-netview Network 99,118,589 15

system-win System 41,113,840 64

security-win Security 5,579,292 35

application-win Application 6,980,559 61

Table 2: Features of real datasets

Table 3 illustrates the occurrence proportion of the

events in the real world datasets used in the experiments.

We record the maximum, average, and minimum occurrence

proportion of the event types in each dataset. Among all

the datasets, the most frequent event type has the occurrence

proportion 0.022, indicating the event occurs only 22 out of

every 1000 time slots throughout the time range of the event

sequences. The data in this table demonstrates that no event

type occurs all the time (the occurrence proportion r ≪ 1)

in real world situation. Therefore, the second term of the O-

notation in Theorem 3.1 is comparable to the first term, and

it makes the theorem meaningful.

Maximum Average Minimum

secure-linux 0.005 0.001 3.739× 10−6

nokia-netview 2.185× 10−4 4.064× 10−5 1.009× 10−8

system-win 4.886× 10−4 1.413× 10−4 2.432× 10−8

security-win 0.022 9.381× 10−4 1.792× 10−7

application-win 0.003 5.787× 10−5 1.432× 10−7

Table 3: Occurrence proportion in real datasets

In order to measure storage cost, we store the SFs

as binary files using object serialization technology. We

use the compression ratio (CR) to quantify the ratio of

SF files comparing with the original log file, i.e., CR =
size(file)

size(original file) . To further save the storage space, we

leverage DEFLATE algorithm [2] to compress the serialized

SF. Figure 4 shows the compression ratio of all the datasets.

It can be observed that all the stored SFs cost less storage

space comparing with the original logs (CR < 1). More-

610 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

01
/1

6/
15

 to
 1

31
.9

4.
13

0.
33

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

over, after compressed by DEFLATE, even the worst com-

pressed SF costs only 32.4% of the space of the original log

file. This fact shows that storing the logs as SFs can save the

disk space.

sec
ure

-linu
x

nok
ia-n

etv
iew

sys
tem

-win

sec
urit

y-w
in

app
lica

tion
-win

0.0

0.2

0.4

0.6

0.8

1.0

Co
m
pr
es
si
on
 R
at
io
 (C

R)

0.143

0.710

0.930

0.368

0.581

0.041

0.247

0.324

0.146
0.198

SSF
comp-SSF

Figure 4: Compression ratio

of SF and compressed SF

1
1 sec

4
2^4 secs

6
2^6 secs

7
2^7 secs

8
2^8 secs

11
2^11 secs

13
2^13 secs

Time Resolution

0.0

0.2

0.4

0.6

0.8

1.0

Co
m
pr
es
si
on

 R
at
io
 (C

R)

secure-linux
nokia-app
system-win
security-win
application-win

Figure 5: Compression ratio

of SF in different resolution
The storage cost can be further reduced if the low level

details are pruned. Figure 5 shows the compression ratio of

each SF in different 7 resolutions without compression. Note

that the values in the first row of x-label indicate the level

of resolution we store the SFs, and the values in the second

row indicate the corresponding approximate time resolution.

As depicted in this figure, when the resolution is 13 (hourly

resolution), even the most costly SF uses only 5% of space

compared with the corresponding original file.

6.2 Efficiency Evaluation The efficiency evaluation is

conducted in 3-fold. Firstly, we evaluate the performance

of the summarization task by exploring different data query

operators permutations. Moreover, we measure the per-

formance of storing and recovering tasks to evaluate the

time overhead of conducting event summarization within our

framework. Finally, we investigate the performance of merg-

ing and updating tasks to evaluate the maintenance overhead.

We generate 15 synthetic datasets and investigate the

performance of our framework on different datasets by

changing 3 properties as listed in Table 4. The advantage

of using synthetic datasets is that we can evaluate the perfor-

mance of our framework with different properties system-

atically. Since here we only investigate the efficiency, the

occurrences of events are randomly generated.

property values description

#types 20-100 step 20 The number of event types.

#events 60k-140k step 20k The number of event occurrences.

#ts 10m-50m step 10m The time slots in the time range.

Table 4: Properties of synthetic datasets

6.2.1 Performance of Summarization Task In this sec-

tion, we evaluate the performance of all data query operators

except describe. The reason is that the performance of de-

scribe depends on concrete summarization algorithms.

Similar to DML in SQL, the performance of the query

varies with different operator permutations. To investigate

how the order affects the query performance, we pick three

sets of synthetic datasets to evaluate the time cost of different

project, select and zoom permutations. In each set, we

fix two properties and changes the third one. For project,

we pick 10% of the event types from the SF. For select,

we pick 10% of the time range, and zoom out the SF

for one resolution. Table 5 shows the running time of all

the 6 different permutations in 3 sets of experiments. By

examining the experiment results in different perspectives,

we can obtain following observations:
1. Different operators have different time costs. Table 5

shows that select is the most time-consuming and project

is the most time-efficient. In our experiments, select is

102 ∼ 104 times slower than zoom and project. The reason

is that by taking advantage of the SF, zoom only needs to

remove all the leaves from trees in O(log |T |) time and

project only needs to remove the useless trees in O(|E|)
time. However, select is more complicated than the other

two operators. It builds a new SF by extracting events

satisfying the select parameters from the old SF, which takes

O(|T | log |T |) time.

2. Query performance varies drastically according to dif-

ferent operator orders. The experiment results show that

the fastest query costs only 3% the time of the slowest query

on the same dataset. As mentioned before, select is the

slowest operator. The more data it processes, the slower

the execution would be. Therefore, the later the select op-

eration is conducted, the shorter the query execution time

would be.

3. Query performance is insensitive to #events. According

to the experiment results conducted on the datasets with the

same #types and #ts (1st group), the query performance ap-

pears to be stable when #events increases. On the contrary,

the experiment results on the datasets with the same #events

and #ts (2nd group) show that the query time varies linearly.

Also, the results are similar for the datasets with the same

#types and #events but with different #ts (3rd group).

Based on the above observations, to avoid unnecessary

time cost, a good query statement should postpone the select

operation as much as possible. In our prototype, we conduct

simple query optimization by reordering the operators.

6.2.2 Framework Time Overhead The tasks of storing

and recovering are not directly related to event summariza-

tion, and they are considered as overhead for summarization.

We conduct experiments on the same sets of datasets that are

used in Section 6.2.1. For each datasets sets, we investigate

the time cost of storing and recovering by revealing the run-

ning time of involved operators: vectorize, encode, prune for

storing task and decode, unvectorize for recovering task.

Figure 6 shows the experiment results of the time over-

head, where the first bar of each dataset indicates the over-

head of storing task and the second bar indicates the over-

head of recovering task. From the experiment results, we

obtain two following observations. Firstly, all the experi-

ments cost tens of seconds to finish the tasks. Due to the rare

usage of these two tasks, the overhead is acceptable. Sec-

ondly, the time overhead of these two tasks are insensitive

611 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

01
/1

6/
15

 to
 1

31
.9

4.
13

0.
33

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Dataset

Order select-project-zoom select-zoom-project project-select-zoom project-zoom-select zoom-project-select zoom-select-project

select zoom proj select zoom proj select zoom proj select zoom proj select zoom proj select zoom proj

100-60k-50m 72.98 0.006 0.001 84.55 0.006 0.001 84.52 0.005 0.001 2.39 0.02 0.001 2.45 0.02 0.001 2.40 0.02 0.001

100-80k-50m 71.63 0.011 0.001 82.65 0.007 0.001 84.73 0.007 0.001 2.44 0.02 0.001 2.53 0.02 0.001 2.39 0.02 0.001

100-100k-50m 80.48 0.009 0.001 77.25 0.008 0.001 77.65 0.009 0.001 2.39 0.03 0.001 2.41 0.03 0.001 2.41 0.03 0.001

100-120k-50m 84.28 0.008 0.001 85.11 0.009 0.001 84.71 0.009 0.001 2.51 0.03 0.001 2.53 0.03 0.001 2.46 0.03 0.001

100-140k-50m 82.16 0.010 0.001 84.73 0.010 0.001 85.13 0.010 0.001 2.52 0.04 0.001 2.57 0.04 0.001 2.57 0.03 0.001

20-100k-50m 16.32 0.005 0.001 16.21 0.005 0.001 15.48 0.005 0.001 0.55 0.02 0.001 0.55 0.02 0.001 0.51 0.24 0.001

40-100k-50m 33.43 0.006 0.001 30.85 0.007 0.001 31.13 0.007 0.001 0.99 0.02 0.001 0.99 0.02 0.001 0.99 0.02 0.001

60-100k-50m 48.37 0.008 0.001 46.31 0.007 0.001 46.53 0.008 0.001 1.46 0.02 0.001 1.46 0.02 0.001 1.44 0.03 0.001

80-100k-50m 64.34 0.008 0.001 62.10 0.008 0.001 62.09 0.007 0.001 2.12 0.03 0.001 2.04 0.03 0.001 2.04 0.03 0.001

100-100k-50m 80.48 0.009 0.001 77.25 0.008 0.001 77.65 0.009 0.001 2.39 0.03 0.001 2.41 0.03 0.001 2.41 0.03 0.001

100-100k-10m 18.36 0.007 0.001 18.97 0.006 0.001 18.13 0.006 0.001 0.62 0.04 0.001 6.23 0.02 0.001 0.59 0.03 0.001

100-100k-20m 36.83 0.006 0.001 36.56 0.007 0.001 36.66 0.007 0.001 1.16 0.05 0.001 1.19 0.03 0.001 1.29 0.03 0.001

100-100k-30m 39.86 0.008 0.001 39.44 0.008 0.001 39.98 0.008 0.001 1.17 0.03 0.001 1.30 0.03 0.001 1.30 0.03 0.001

100-100k-40m 77.29 0.009 0.001 76.71 0.008 0.001 74.61 0.008 0.001 2.22 0.03 0.001 2.47 0.03 0.001 2.37 0.03 0.001

100-100k-50m 80.48 0.009 0.001 77.25 0.008 0.001 77.65 0.009 0.001 2.39 0.03 0.001 2.41 0.03 0.001 2.41 0.03 0.001

Table 5: Running time composition of different query orders (time unit: second)

100-60k-50m

100-80k-50m

100-100k-50m

100-120k-50m

100-140k-50m
0

10

20

30

40

50

60

70

80

Ru
nn

in
g

tim
e

(s
ec

on
d)

64

47

56

47
52

69 71 72 72 74

prune
decode
encode
unvectorize
vectorize

(a) Datasets with different #events

20-100k-50m

40-100k-50m

60-100k-50m

80-100k-50m

100-100k-50m
0

10

20

30

40

50

60

70

80

Ru
nn

in
g

tim
e

(s
ec

on
d)

12

22

31

45
51

15

30

45

64

74prune
decode
encode
unvectorize
vectorize

(b) Datasets with different #types

100-100k-10m

100-100k-20m

100-100k-30m

100-100k-40m

100-100k-50m
0

10

20

30

40

50

60

70

Ru
nn

in
g

tim
e

(s
ec

on
d)

15

22 22

41
45

16

30 30

58

67
prune
decode
encode
unvectorize
vectorize

(c) Datasets with different #ts

Figure 6: Running time of storing and recovering tasks for datasets with different #events, #types, #ts

to #events but sensitive to #types and #ts. As we drill down

to the operator level, we find that most of the increased run-

ning time comes from the encode operator in storing task and

decode operator in recovering task. In our implementation,

both of these two operations have the same time complexity

O(|E||T | log |T |). The running time would increase if either

|E| or |T | increases. Also, the distribution of event occur-

rences is another factor to affect the running time.

6.2.3 Performance of SF Maintenance In this section,

we investigate the performance of maintenance tasks on

two aspects: how the characteristics of events and how

the resolution of data affects the performance. Similar

to previous experiments, we evaluate the performance of

both tasks using the same three groups of datasets. For

each group, we convert the first dataset into a SF, and

incrementally update and merge other datasets. Moreover,

we evaluate updating or merging tasks by storing the SFs

with 7 different resolutions. Figure 7(a) and 7(b) illustrate

the results for merging and updating task. The time cost

of the merging task is sensitive to the resolution but the

updating task is not. In a high resolution, the merging task is

more efficient than the updating task. The reason is that the

updating task uses the time-consuming operator encode but

the merging task does not.

6.3 An Illustrative Case Study To demonstrate how

META facilitates summarization, we list 3 tasks (1st row)

as well as the corresponding statement (2nd row) in Figure 8

to show how the analysts work on security-win dataset. We

also attach corresponding summarization results (3rd row)

1
1 sec

4
10 sec

6
30 sec

7
1 min

8
5 min

11
20 min

13
1 hour

Time Resolution

10-1

100

101

102

103

Ti
m
e
(s
ec
on

d)

#events group
#types group
#ts group

(a) Updating task

1
1 sec

4
10 sec

6
30 sec

7
1 min

8
5 min

11
20 min

13
1 hour

Time Resolution

101

102

103

Ti
m

e
(s

ec
on

d)

#events group
#types group
#ts group

(b) Merging task

Figure 7: Performance of maintenance tasks
Task 1 Task 3Task 2

Drill down to view summary

ith t t (538 540

Update the summary with new

l d d f 11/30/2011
Summarize the security win

log in day granularity

with event type (538, 540,

576, 858 and 861) between

11/01/2011 and 11/29/2011 in

hour granularity

log recorded from 11/30/2011

to 01/04/2012 and then

summary them altogether in

minute granularityg y g y

(1) store security win as

SSFwith resolution 13

(2) d ib SSF

(3) describe (select 538,540,

576, 858, 861 from SSF

between 01/11/2011 and

(4) update SSF with new

security log

(5) E (3) i b(2) describe SSF zoom to

resolution 16

/ /

29/11/2011 zoom to

resolution 6)

(5) Execute (3) again by

changing resolution to 13

Figure 8: Summarize with META
by implementing the describe operator according to [4] 1.

As shown in Figure 8, the analysts only need to write

one or two commands for each task. All the details are

handled by the framework. Besides convenience, META

also improves the reusability of data due to the SF’s natural

property. Once the security-win log is stored in SF, it is

1source code is available at http://users.cs.fiu.edu/ yjian004/#codes

612 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

01
/1

6/
15

 to
 1

31
.9

4.
13

0.
33

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

directly available for all the 3 tasks, and there is no need

to generate or maintain any intermediate data.

Without META, the analysts need to write programs on

their own to conduct the data transformation and extraction.

Taking task 2 for instance, the analysts should write several

programs to transform the events in hourly resolution, to pick

out the records related to the event types 538, 540, 576, 858,

861, and to extract the records occurring between 11/01/2011

and 1/29/2011. The analysts would do similar tedious work

when facing the other two tasks.

7 Conclusions
We present our research efforts on establishing – META – an

integrated event summarization framework. To facilitate the

multi-resolution analysis of the events, we store the events in

the form of summarization forest. Also, we propose a set of

atomic operations on top of the data model and a set of sum-

marization tasks to ease the work of the analysts. The exper-

iment results demonstrated the efficiency and effectiveness

of our proposed framework. For the future work, we will ex-

tend event summarization techniques to support distributed

systems, which generate the events in more complicated en-

vironments at a much larger scale. Moreover, we will use the

summarization results for automatic problem determination.

Appendix
Proof of Lemma 3.2:
Proof. We calculate the number of zero nodes from the bottom

level to the top level. It is trivial to know that besides the root level,

the number of nodes at height h is nh = |T |

2h+1 . For each level, the

number of zero nodes zh equals to the number of nodes nh minus

the number of non-zero nodes uh.

We start with h = 0 (the leaf level). In the worst case, the

event occurrences are uniformly distributed along the time-line.

There are two cases according to r:

1. 0 ≤ r < 1

2
. The event occurs in less than half of the

time slots. In such condition, u0 = min(r|T |, n0), and

z0 = n0 − u0 = |T |
2

− r|T |. So p0 = z0
n0

= 1− 2r.

2. 1

2
≤ r ≤ 1. The number of zero nodes at the leaf level can be

0. Since occurrences are uniformly distributed, it is possible

that the event appears at least once in every two continuous

time slots. In this case, p0 = 0.

Therefore, the lower bound probability of the zero nodes at the

leaf level is p0 = max(1 − 2r, 0). When h = 1, in the

worst case, the occurrences of non-zero nodes at the leaf level

are still uniformly distributed, so u1 = min(u0, n1). Therefore,

z1 = n1 − u1 = max(n1 − u0, 0) and p1 = max(1 − 22r, 0).
When h > 1, if the occurrences of non-zero nodes at a lower

level is still uniformly distributed, the number of zero nodes uh =
min(uh−1, nh). Similar to the case of h = 1, zh = nh − uh, and

ph = max(1− 2h+1r, 0).

8 Acknowledgement
The work of Y. Jiang and T. Li is partially supported

by the National Science Foundation under grants DBI-

0850203, CCF-0939179, CNS-1126619 and IIS-1213026

and by the Army Research Office under grant number

W911NF-1010366 and W911NF-12-1-0431.

References

[1] Michal Aharon, Gilad Barash, Ira Cohen, and Eli Mordechai.

One graph is worth a thousand logs: Uncovering hidden

structures in massive system event logs. In PKDD, 2009.

[2] Salomon David. Data Compression: The Complete Reference.

Springer, 2007.

[3] Common Event Expression. http://cee.mitre.org/.

[4] Yexi Jiang, Chang-Shing Perng, and Tao Li. Natural event

summarization. In CIKM, 2011.

[5] Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong Chang.

Asap: A self-adaptive prediction system for instant cloud

resource demand provisioning. In ICDM, 2011.

[6] Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong Chang. Self-

adaptive cloud capacity planning. In SCC, 2012.

[7] Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong Chang.

Cloud analytics for capacity planning and instant vm provi-

sioning. IEEE TNSM, 2013.

[8] Jerry Kiernan and Evimaria Terzi. Constructing comprehen-

sive summaries of large event sequences. TKDD, 3, 2009.

[9] Jingxuan Li, Lei Li, and Tao Li. Mssf: a multi-document

summarization framework based on submodularity. In SIGIR,

2011.

[10] Zhenming Li, Shan Lu, Suvdar Myagmar, and Yuanyuan

Zhou. Cp-miner: A tool for finding copy-paste and related

bugs in operating system code. In OSDI, 2004.

[11] Adetokunbo Makanju, A. Nur Zincir-Heywood, and Evange-

los E.Milios. Clustering event logs using iterative partitioning.

In KDD, 2009.

[12] Stephen Mallat. A theory for multiresolution signal decom-

position: the wavelet representation. IEEE PAMI, 11, 1989.

[13] Wang Peng, Haixun Wang, Majin Liu, and Wei Wang. An

algorithmic approach to event summarization. In SIGMOD,

2010.

[14] Wei Peng, Chang-Shing Perng, Tao Li, and Haixun Wang.

Event summarization for system management. In KDD, 2008.

[15] Chang-Shing Perng, David Thoenen, Genady Grabarnik,

Sheng Ma, and Joseph Hellerstein. Data-driven validation,

completion and construction of event relationship networks. In

KDD, 2003.

[16] Ricardo Vilalta and Sheng Ma. Predicting rare events in

temporal domains. In ICDM, 2003.

[17] Dingding Wang, Shenghuo Zhu, Tao Li, Yun Chi, and Yihong

Gong. Integrating document clustering and multidocument

summarization. TKDD, 5(3), 2011.

[18] Wei Xu, Peter Bodik, and David Patterson. A flexible archi-

tecture for statistical learning and data mining from system log

streams. In ICDM, 2004.

[19] Wei Xu, Ling Huang, Armando Fox, David Patterson, and

Michael Jordan. Large scale system problem detection by

mining console logs. SOSP, 2009.

[20] Kenji Yamanishi and Yuko Maruyama. Dynamic syslog

mining for network failure monitoring. In KDD, 2005.

[21] Chunqiu Zeng, Yexi Jiang, Li Zheng, Jingxuan Li, Lei Li,

Hongtai Li, Chao Shen, Wubai Zhou, Tao Li, Bing Duan, et al.

Fiu-miner: a fast, integrated, and user-friendly system for data

mining in distributed environment. In KDD, 2013.

613 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

01
/1

6/
15

 to
 1

31
.9

4.
13

0.
33

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

